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The Runge-Kutta method for the numerical solution of Cauchy’s problem for a 
system of ordinary differential eqqatlons has an obvious Iterative character. 
As cLcmonstrated ln this paper, this phenomenon arises from the connection 
between the Rungt-Kutta method and Picard’s lttratlvt methgd. The estlma- 
tlon of error for the Rungt-Kutta method Is based on this connection. 

1. Let Cauchy’s problem be given for a normal system of ordinary dlffer- 
tntlal equation8 of the first order 

Yr’ (4 = 1, (6 Yl9 ' * '9 Y,,, Yr (4 = Yr" (r = 1, . . .) n) WV 

Btlow we use the following notations: 
integral form of the problem (1.1) 

Yr (4 = Yr” + j r, It; y1 (0, . . *, Y* WI lft (r = 1, . . .) n) (1.2) 
x. 

apprmlmate solution of Equation (1.2), obtained after 8 Iterations 
by Picard’s method=. 

Y,, , (4 = yro + 1 f, I$; Ye, s_1 (Q, . . .I yn, s_1 ($)I dt, 0. = i, . . ., n) (1.3) 

approximate siiutlon of the problem (1.1) by the Ftunge-Kutta method 

‘r, I) (z) = YrO + ’ i fir, ikr, i (r = 1, . . ., n) (1.1) 
i=l 

h =t--Z 0, ‘r, 1 = 0; a,, $, &., i, j, k=const (r = I, . . ., n), (i.= 1, . . .) s), 

Let ua prove the theorem about the connection between the Runga-Kutta 
method a& Plcard’r method. 

Theorem 
a-Kutta method 

“% by loard’a method 
tuted by numarloal 

solution of the problem (1.1) by means of the 
gives the stmt solution as that of the problem (1.2) 

If the Znttgrals ln (1.3) art successively substl- 
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Proof. Let us take Y,,s (2) = Y,” for the zero approxlmatlon In (1.3) 
and decompose the interval of the Integration [x,,,x] for every Equation 
(1.3) by the same method Into 8 Intervals by the points 

20 f a,,+ (i = 1, 2, . . .) s + 1) 

taking ar,l= 0 and a,.,,, = 1 . Let UB use the approximation formula 

%+=r, i+$’ 

s 
F (4 dx = PhF (z. f ar, ih) W-4 

%+a,, i” 
According to the above presentation we have 

%+a,, ih 

yl, k (3 + or, $4 = ylo f s 
f, bk; yr, k-l Uk), . . .v Y,,, k_l &Jl dt, = (i.7) 

x. 
i-1 %a-%, j+lh 

=YIe+x 1 fi ttk; Yl, k_l(tkh . . ., Y,, k-1 ($:)I dtk = I’,, k (20 +. a,, rh) = 

i-1 *+a,, , .h 
i-1 

= Fl’ + x Br, i, 1, jhfl [XO + a,, #I; Y,, k_lh f a,, jh), . . . , Y,,, k-1 6% -k a,. WI 
j=l 

Here Yl, k (%I+ a,., ih) Is the approximate value of 
Yl, k (% + 0,. ih), r=i, 2, . . . . n; 

1 = 1, 2, . . ., n; k = 1, 2, . . ., s; i = i, 2, . . ., s -j- i; Y,, 0 = yr, o =YPO, 

with the understanding, that In the case j = 1 the sum Is empty, 

After the remark 

5, k (20 + a&) = y& k 6%) = Yl, r, (I = 1, 2, . . ., n; k = 0, 1, . . ., s) (1.8) 

we prove the validity of Equation 

’ yl, ,+ (~0 -I- %, $4 = Yl, r-Z (so -I- a,, J4 ( ‘, z :; 22; : : 1; i) (1.9) 

for t = ir2,...#8 - 1 . 
For the sake of brevity we shall omit inside f the argument of Yi * 

end provide Y with the Index e , assuming that simultaneously It sub8 4 l- 
tutes 8 -1 and 8-2. 
Y, 

Thus the expression YIBo has to be read once as 
r-l and secondly as Y,, c, . 

‘Now let us write (1.7) fir k = 8 -1 and k-8- 2 consecutively In 
steps. 

First step 
i-1 

'1, o(~O + a,, ih) = YI' + 2 %,i,~, jfi I% + a, jh; Yl,o_l, . . ., lrn, o_1~ 
j=l 

Second step 
i-l 

3, ~(~0 + a?. ih) = Yl" + x hPr,i,l, If*{20 + a,, jh; K” + 
j=r 

-f- k7 b, j, I, khfl (20 + 0,. & Yl, o-Iv . . ., Y,,, ,&, . . ., y,,” + 

+ 2 f%, j, n. khfn (20 + Q,, kk Yl, c_29 - . ., Y,,, o_r)} li.10) 

Contlnulng this writing, we realize that with every step the set of mem- 
bers of the innermost sums decreosea by one, and also the second index of 
Y lowers Itself by one. Furthermore, r,, ._, 18 different from Y,, ,_, 
oiiifr with respect to Y ln the innermost 8UmI9. 
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It follows from the above that the Innermost sums of the step t= 1 have 
the form , 

2 b, 2, k, Zhfk (% + a,, & Yl, o_i+lB . . :, Y,,, o_j+l) = 
I=1 

= B r. 2, k, #k bo + Or, I~; ye. O-i+l (lo + a,., lh), . . ., Y,,, a_i+l (x0 + a,,, ,h)J 

However, according to (1.8) 

Y k. s-i (% + ar, lh) = yk, s-i-1 b0 + a,, In) 
k = 1;2, . . ., n 
i = 1,2,. . ., s - 1 

Thus the Theorem (1.9) is proved. Now we write (1.3) In the form 

Yr, I (2) = Yr, a (z. + a,+,h) = (r = 1, 2, . . ., n) (1.11) 

x9+%, i+lh 

=?I O+f, 5 f, k YI, 8-1 (t,), . - -9 in, s_1 (Ql dt, 
i=l xm+clp, ih 

After substituting the Integral In (1.11) by numerical quadratures along 
with (1.6) and (1.7) we obtain 

Yr, I) (I) z Y,; 8 (z) = Y,” + i M,, if, 1%~ + a,, & (1.12) 
k1 

Y 1, S_l 6% f a,,@, . - -. Y,, s_1 (z. -I ar,ihl) = Y,.' + i P,, *k,,* (r = i, 2, . . .A 

It is clear, that 

i=l 

k r. i = Wr be + a,,& Yl,br be + a,,iW, . . ., Yn, s_1 (2, + a,,&1 

(r = I, 2, . . ., n; i = 4, 2, . . ., s) (1.13) 

or 

i-l 

k . = hf,{r, + q,& Y1° + p. a 

zl P,,i,l,jMl Iso + ar,jk Yl, k2(so + a,,j$ta . vY,, #_2 6% + ar, jh)l, - . -9 Y," + 

i-l 

Since here idi---ids-1, we may use the relations (1.9) and write 
the expression obtained for k,, , in ‘the form 

k . = W,{zo + ay, & yIO + r. 1 (1.14) 

i-1 

i-l 

or, substituting (1.13) in (1.14), we obtain finally 
i-l i-l 

k r, i = kfr (50 $- ar,ih; YI' + x Pr,i,l, jkl, jv * * -1 Yn" f x *Pp,j,n,jk,,j) 
j=l j=l 

q.e.d. 
(r = 1, . . ., n; i = 1, . . .,s) (1.15) 



2, Let us pass over to the estimation of error of the approximate solu- 
tion of problem (1.2), using Picard’s iterative method of substituting inte- 
grals by numerical quadratures. As In Section 1 we shall do s iterations, 
take the vector fur&Ion u(x) for eero approximation and aubstltute the 
integrals by some numerical quadrature%. 

The estimation of error by the Runge-Kutta method mentioned In Section 1 
will be a particular case of the estimation here obtained. 

‘&e basic idea of the estimation of error will be obtained from the proof 
of Picard’s theorem on the existence and uniqueness of the solution of Cau- 
thy’s problem for a normal system of ordinary differential equations (com- 
pare e.g. 111, pp. g-16). However, In the above mentioned proof there are 
introduced from the very beginning rough estimations, in consequence of which 
in some cases the error will be overestimated. In our considerations here 
the overestimation Is due to the method applied. In practice, for the pur- 
pose of slmpllfying the estimation of error, the estimation in every concrete 
case needs only be considered with reference to the required accuracy of the 
approximate solution. For instance, in the case of the solution of a differ- 
ential equation of order s , It Is important to know and to keep within cer- 
tain limits only the error of the unknown function, whllr? the derivatives of 
the solution are not necessary. According to this requirement it will be 
necessary to s%mplify the estimatfon of error. 

The rounding-off errors and the calculations of the right-hand sides OS 
the system (1.1) will not be considered, since the ana1ysls OS their lnllu- 
ence on the error of the numerical solution has been made ln detail in [3]. 

For the sake OS brevity let us use vector notation. Let IuI denote an 
n-dimensional vector, the coordinates of which are absolute values of the 
coordinates of the vector u . XS all coordinates of the vector d are 
larger than the corresponding coordinates of the vector b of the same 
dimension as d , we will write d > b . In vector notation (1.2) and (1.3) 
become z 

Y (4 = Y0 i- f It, Y 611 & s 
f/8 0) = Y0 + 1 f 0, 21,_2 WI dt (24 

5 x. 
Now let us define the domain p by the inequalities 

moBt<;ze+% IY-Y016A (2.2) 

We suppose that In the domain D the vector funCtlOn y(x, ) is contl- 
nuous and Sulfills the Llpschitz condition of the first order t the varla- 
ble Y . Consequently, there exist a vector o and the matrix p with 
nonnegative components and with elements such, that in D 

I f 6% YJ I Q Cl I f (2, Y) - f (2. 4 I B p IrY - z I (2.3) 

On the interval Ze< $6 xc+ 6, where d is chosen such, that the ine- 
qualities 

o<aBc, de < b (2.4) 

we simultaneously satisfied; the error *1&) = 1 Y (*) - fb (2) 1 can be 
obtained In the following way ([21, p.110); according to the definition of 
Picard*s Iteration we have 

Yi (4 = y” + 1 f ft, Y&I 011 dt (i = i, 2, . . 4. f/o (4 = ufz)~L) (2.5) 

From this we mayskeet with the help OS the second inequality (2.4) 

&f 
I ;vr (4 - Y&l (4 I < (;i_ _1)! P’-‘max 1 yl (4 - u (2) 1 (i = 1, 2, . . .) (2.6) 

and Sor k>s 

1 Yk b) - y, (d I “-;; i Yk b) - Yk_1 b) I + 1 Y&i (2) - Yk_s b) I + * * . + 
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Passing to the limit in the l&t Inequality for k - m , we obtain 

(2.8) 

Substituting consecutively the integrals In (2.2) by the numerical quad- 
rature formulas, we get the solution Y(X) 

The error Q (4 = IYe (4 - Y(dI of the numerical quadrature formulas 
will be assumed as known. 
the estimation 

Then the error e(z) = ) Y(z) - Y(z)( will have 

e (4 < e,(a) + s, (4 (2.9) 
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